Bear River Walnut Ranch/Gilbert Group Walnuts

Wheatland, CA >forms and labels Employee resources Equipment DB: Add New Incident All Incident Log  Equipment List  BRWR Hop Ranch Map   BRWR North Map

Bear River Walnut Ranch is situated in the fertile alluvial fan of the Bear River. The area has a historic link to both the Gold Rush, in that much of the ranch's soil is the product of hydraulic mining, and to some of the earliest large-scale agriculture in California, the Durst Hop Farms. Below you will find information about walnuts: their evolutionary history, their domestication, and their currently known health benefits. Walnuts have a very low ecological profile and tend to be perceived as improving the ambiance of an agricultural area, much like grapes or apples, due to the shade they provide, the local summertime temperature reduction they promote via broad-leaf evapotranspiration, and the aromatic oils they emit around harvest time.

Walnuts evolved to be mammal food, and this likely explains their high nutritive value. Explore the links below to learn about the evolutionary origins of walnuts and how they came to be one of the world's healthiest purely natural food supplements.

Genus Juglans, the Walnut species of the world
The Walnuts: Juglans

©2024 the Gilbert Family

map

Figure 1.Wild Juglans world distribution. Light blue is the projected distribution of walnuts prior to the time of the Persian and Greek empires, although it is uncertain if the actual pre-empire native distribution is more to the east, closer to that of Juglans sigilata (dark blue). ©Bear River Walnut Ranch

Juglandaceae

Genus Juglans

The genus Juglans is characterized by four-chambered fruits and dehiscent hulls that peel back from the shells when the nuts become mature. Traditionally, black walnuts and Persian/English walnuts have been placed in one group, and butternuts, both Old and New World varieties, in another. Manos and Stone (2001) analyze both shape and genes and warn that the position of J. regia/sigiliata is more ambiguous. It is therefore unclear if the Juglans radiation initiates from the Old or New World, although traditionally the disjunct distribution of multiple spicies of black walnut from Argentina to St. Lawrence Seaway has been interpreted as implying a New World origin for the genus. Manning (1978) recognizes 21 species in the genus Juglans: J. regia, J. australis, J. boliviana, J. californica, J. hindsii, J. hirsuta (northeast Mexico), J. jamaicensis (Carribbean islands), J. major, J. microcarpa, J. mollis (central Mexico), J. neotropica, J. nigra, J. olanchana, J. pyriformis (southeast Mexico), J. soratensis (Bolivia), J. steyermarkii (Guatemala), J. venezuelensis (Venezuela), J. ailantifolia, J. cathayensis, J. mandshurica, J. cinerea

Juglans cinera

cineracinera nutcinera
Figure 8. Juglans cinera LEFT: Leaf image of J. cinera (image courtesy Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester. Courtesy of USDA NRCS Wetland Science Institute. Usage Requirements.); CENTER:Nut image of J. cinera (image courtesy W.D. Brush. Provided by National Agricultural Library. Originally from US Forest Service. United States, DC, Washington. Usage Requirements.); RIGHT: USDA Plants Database range map for J. cinera (image hot-linked from Virginia Tech Department of Forest Resources ) additional images

 

Juglans cathayensis

cathayensis
Figure 9.Leaf and nut image of J. cathayensis (image mfrom hnsdc.org. )

 

Juglans ailantifolia

ailantifoliaheartnutailantifolia_treeali_range
Figure 10. Juglans ailantifolia LEFT: Leaf image of J. ailantifolia (image from Michael Kesl.); CENTER LEFT: Nut image of J. ailantifolia; CENTER RIGHT: Tree vegetation; RIGHT: Map for J. ailantifolia(Biodiversity occurrence data accessed through GBIF Data Portal, 2012 *note that this does not necessarily represent the full natural range)

 

Juglans mandshurica

jnigra
Figure 11. Juglans mandshurica LEFT: Leaf and nut image of J. mandshurica (image courtesy Jean-Pol GRANDMONT.); CENTER:Nut image of J. mandshurica (image from Michael Kesl. ); RIGHT: USDA Plants Database range map for J. mandshurica (image hot-linked from Virginia Tech Department of Forest Resources ).

 

Juglans nigra

nigracinera nutcinera
Figure 12. Juglans nigra LEFT: Leaf image of J. nigra (image courtesy Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester. Courtesy of USDA NRCS Wetland Science Institute. Usage Requirements. ); CENTER:Nut image of J. nigra (image courtesy Steve Hurst. Provided by ARS Systematic Botany and Mycology Laboratory. United States, OK, Stillwater. Usage Requirements. ); RIGHT: USDA Plants Database range map for J. nigra

 

Juglans hindsii

jnigracinera nutcinera
Figure 13. Juglans hindsii LEFT: Leaf image of J. hindsii (image courtesy Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester. Courtesy of USDA NRCS Wetland Science Institute. Usage Requirements. ); CENTER:Nut image of J. hindsii (image courtesy Courtesy of USDA Forest Service. Usage Requirements. ); RIGHT: USDA Plants Database range map for J. hindsii

 

Juglans californica

jnigracinera
Figure 14. Juglans californica LEFT: J. californica (image courtesy Sargent, C.S., The Silva of North America, vol. 7: t. 337 (1898) [C.E. Faxon]; image is in the public domain and was obtained from http://plantgenera.org); RIGHT: USDA Plants Database range map for J. neotropica (image hot-linked from Virginia Tech Department of Forest Resources )

 

Juglans major

majorcinera nutmajor
Figure 15. Juglans major LEFT: Leaf image of J. major (image ©2002 Steven J. Baskauf - Terms of use
. );
CENTER: Nut image of J. major (image courtesy Courtesy of Steve Hurst); RIGHT: USDA Plants Database range map for J. neotropica (image hot-linked from Virginia Tech Department of Forest Resources )

 

Juglans olanchana

olanchanamicrocarpa
Figure 16. Juglans olanchana images courtesy Proyecto Aldea Global and Trees for the Future RIGHT: RIGHT: Bioversity International database range map for J. olanchana.

 

Juglans neotropica

neotropicajnigraneotropica_nutmicrocarpa
Figure 17. Juglans neotropica LEFT: J. neotropica (image mariasimona en el jardín blog ); CENTER LEFT: leaf image of J. neotropica ; CENTER RIGHT: J. neotropica nuts; RIGHT: Bioversity International database range map for J. neotropica.

 

Juglans microcarpa

jnigramicrocarpacinera
Figure 18. Juglans microcarpa LEFT: J. microcarpa (image courtesy Sargent, C.S., The Silva of North America, vol. 7: t. 335 (1898) [C.E. Faxon]; image is in the public domain and was obtained from http://plantgenera.org ); CENTER: leaf image of J. microcarpa (image hot-linked from Virginia Tech Department of Forest Resources ); RIGHT: USDA Plants Database range map for J. microcarpa (image hot-linked from Virginia Tech Department of Forest Resources )

 

Juglans australis

jaustraliscineracinera
Figure 19. Juglans australis LEFT: leaf image of J. australis; CENTER: nut (images hot-linked from Paisajista Laila Huber). RIGHT: USDA Plants Database range map for J. australis (image hot-linked from Virginia Tech Department of Forest Resources )

 

Juglans sigillata

iron_walnutiron nutcinera
Figure 20. Juglans sigillata LEFT: J. microcarpa (image courtesy Sargent, C.S., The Silva of North America, vol. 7: t. 335 (1898) [C.E. Faxon]; image is in the public domain and was obtained from http://plantgenera.org ); CENTER:leaf image of J. sigillata (image hot-linked from Virginia Tech Department of Forest Resources ); RIGHT: Global Biodiversity Information Facility range map for J. sigillata (Biodiversity occurrence data accessed through GBIF Data Portal, 2012 *note that this does not necessarily represent the full natural range)

 

Juglans regia

regia
Figure 21. Juglans regia

 

References cited

 

Aradhya, M. K. (2006). Cladistic Biogeography of Juglans (Juglandaceae) Based on Chloroplast DNA Intergenic Spacer Sequences. Darwin's harvest: new approaches to the origins, evolution, and conservation of crops, 143.

Aradhya, M. K., Potter, D., Gao, F., & Simon, C. J. (2007). Molecular phylogeny of Juglans (Juglandaceae): a biogeographic perspective. Tree Genetics & Genomes, 3(4), 363-378.

Bailey, V., & United States. Bureau of Biological, S. (1931). Mammals of New Mexico (Vol. 53): US Govt. print. off.

Blokhina, N. I. (2004). On some aspects of the systematics and evolution of the Engelhardioidea (Juglandaceae) by wood anatomy. ACTA PALAEONTOLOGICA ROMANIAE, 4, 13-21.

Baughman, M. J. and Vogt, C. (2002). Growing Black Walnut. Regents of the University of Minnesota. Downloaded from http://www.extension.umn.edu/distribution/naturalresources/dd0505.html

Brady, S. G., Sipes, S., Pearson, A., & Danforth, B. N. (2006). Recent and simultaneous origins of eusociality in halictid bees. Proceedings of the Royal Society B: Biological Sciences, 273(1594), 1643.

Chase, M. W., Fay, M. F., Reveal, J. L., Soltis, D. E., Soltis, P. S., Anderberg, A. A., et al. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161(2), 105-121.

Chaw, S. M., Chang, C. C., Chen, H. L., & Li, W. H. (2004). Dating the monocot‚ dicot divergence and the origin of core eudicots using whole chloroplast genomes. Journal of Molecular Evolution, 58(4), 424-441.

Edelman, A. J., Koprowski, J. L., & Edwards, C. W. (2005). Diet and tree use of Abert's squirrels (Sciurus aberti) in a mixed-conifer forest. The Southwestern Naturalist, 50(4), 461-465.

Friis, E. M., Pedersen, K. R., & Schönenberger, J. (2006). Normapolles plants: a prominent component of the Cretaceous rosid diversification. Plant Systematics and Evolution, 260(2), 107-140.

Hafner, D. J., & Kirkland, G. L. (1998). North American rodents: status survey and conservation action plan (Vol. 42): World Conservation Union.

Harvey, P. H., Clutton-Brock, T. H., & Mace, G. M. (1980). Brain size and ecology in small mammals and primates. Proceedings of the National Academy of Sciences, 77(7), 4387.

Hause, B., & Schaarschmidt, S. (2009). The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry, 70(13-14), 1589-1599.

Iljinskaja, I. A. I. i. I. (1990). On the taxonomy and phylogeny of the Juglandaceae family. Bot. Zh. SSSR, 75(792-803).

Kruska, D. C. T. (2005). On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and feralization. Brain, Behavior and Evolution, 65(2), 73-108.

Manchester, S. R., & Dilcher, D. L. (1982). Pterocaryoid fruits (Juglandaceae) in the Paleogene of North America and their evolutionary and biogeographic significance. American Journal of Botany, 275-286.

Manos, P. S., & Stone, D. E. (2001). Evolution, phylogeny, and systematics of the Juglandaceae. Annals of the Missouri Botanical Garden, 231-269.

Maser, Z., & Maser, C. (1987). Notes on mycophagy of the yellow-pine chipmunk (Eutamias amoenus) in northeastern Oregon. The Murrelet, 68(1), 24-27.

Meier, P. T. (1983). Relative brain size within the North American Sciuridae. Journal of mammalogy, 642-647.

Moller, H. (1983). Foods and foraging behaviour of red (Sciurus vulgaris) and grey (Sciurus carolinensis) squirrels. Mammal Review, 13(2‚Äê4), 81-98.

Molyneux, R. J., Mahoney, N., Kim, J. H., Campbell, B. C., & Hagerman, A. E. (2008). Antioxidant Constituents in Tree Nuts: Health Implications and Aflatoxin Inhibition.

Smith, S. A., Beaulieu, J. M., & Donoghue, M. J. (2010). An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proceedings of the National Academy of Sciences, 107(13), 5897.

Soltis, P. S., Soltis, D. E., & Chase, M. W. (1999). Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature, 402(6760), 402-404.

Stanford, A. M., Harden, R., & Parks, C. R. (2000). Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data. American Journal of Botany, 87(6), 872-882.

Stapanian, M. A., & Smith, C. C. (1978). A model for seed scatterhoarding: coevolution of fox squirrels and black walnuts. Ecology, 884-896.

Steemans, P., Hérissé, A. L., Melvin, J., Miller, M. A., Paris, F., Verniers, J., et al. (2009). Origin and radiation of the earliest vascular land plants. Science, 324(5925), 353.

Steppan, S. J., Storz, B. L., & Hoffmann, R. S. (2004). Nuclear DNA phylogeny of the squirrels (Mammalia: Rodentia) and the evolution of arboreality from c-myc and RAG1. Molecular Phylogenetics and Evolution, 30(3), 703-719.

Stone, D. E. (2010). Review of New World Alfaroa and Old World Alfaropsis (Juglandaceae). Novon: A Journal for Botanical Nomenclature, 20(2), 215-224.

Taylor, M. D. W. (2010). Cyclocarya brownii from the Paleocene of North Dakota, USA. ARIZONA STATE UNIVERSITY.

Wang, H., Moore, M. J., Soltis, P. S., Bell, C. D., Brockington, S. F., Alexandre, R., et al. (2009). Rosid radiation and the rapid rise of angiosperm-dominated forests. Proceedings of the National Academy of Sciences, 106(10), 3853.

Weber, A. P. M., & Osteryoung, K. W. (2010). From endosymbiosis to synthetic photosynthetic life. Plant physiology, 154(2), 593-597.

Weigl, P. D., & Hanson, E. V. (1980). Observational learning and the feeding behavior of the red squirrel Tamiasciurus hudsonicus: the ontogeny of optimization. Ecology, 214-218.

Wible, J. R., Rougier, G. W., Novacek, M. J., & Asher, R. J. (2007). Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature, 447(7147), 1003-1006.

Wrazen, J. A., & Svendsen, G. E. (1978). Feeding ecology of a population of eastern chipmunks (Tamias striatus) in southeast Ohio. American Midland Naturalist, 190-201.

Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G., & Bhattacharya, D. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution, 21(5), 809-818.